TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.
نویسندگان
چکیده
Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.
منابع مشابه
Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice.
Pharmacological activation of the constitutive androstane receptor (CAR) protects the liver during cholestasis. The current study evaluates how activation of CAR influences genes involved in bile acid biosynthesis as a mechanism of hepatoprotection during bile acid-induced liver injury. CAR activators phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or corn oil (CO) w...
متن کاملHerbal compound 861 prevents hepatic fibrosis by inhibiting the TGF-β1/Smad/SnoN pathway in bile duct-ligated rats
BACKGROUND This study was to evaluate the effects of herbal compound 861 (Cpd861) on ski-related novel protein N (SnoN) and transforming growth factor-β1 (TGF-β1) /Smad signaling in rats with bile duct ligation (BDL)-induced hepatic fibrosis, and to explore the mechanisms of Cpd861 on hepatic fibrosis. METHODS Thirty Wistar male rats were randomly divided into three groups: sham operation, BD...
متن کاملInvolvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate ...
متن کاملHepatoprotective and Antioxidative Effect of Rosmarinic Acid Against Bile Duct Ligated (BDL)-Induced Cholestatic in Male Rats
Aims: Cholestasis is a type of liver disease due to structural damage and dysfunction of hepatobiliary system which at first, results in accumulation of bile acids and other toxins in plasma and hepatic tissue. The aim of the current study was to investigate the possible hepatoprotective effects of rosmarinic acid against oxidative stress and liver injury in bile duct ligation (BDL)- induced ch...
متن کاملModulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice
Objective(s):Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body’s resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2012